
THE PLAN FOR TOMORROW

Compile-Time Extension Points for C++ Libraries and Applications

ThePhD - @thephantomderp – LinkedIn - https://thephd.github.io
Columbia University Student, May 10th, 2019
C++Now2019, Aspen, Colorado

https://twitter.com/thephantomderp/
https://www.linkedin.com/in/thephd
https://thephd.github.io/

EXTENSION GOALS: ADDING
FUNCTIONALITY…

 beyond what was initially considered by application / library authors
 Callback functions with void* userdata in C libraries

 to perform some semantically-expected task for types outside author’s purview
 std::swap

 to endow a class with a specific, compatible interface
 virtual protected functions in iostreams

2

WELL-KNOWN EXTENSION
METHODS

A brief overview of compile-time and runtime hybrid extension technology

3

WELL-KNOWN: VIRTUAL METHODS

 No surprises here: create base class and stuff it with virtual methods

struct animal {
virtual std::string sound () const = 0;

};

struct dog : public animal {
virtual std::string sound () const override {

return “woof”;
}

};

4

WELL-KNOWN: VIRTUAL METHODS USAGE

 Used extensively up to ~2008, less so now in place to static polymorphism
 Many game engines: Ogre, Irrlicht, Doom, etc…

 Qt: QObject and the entire class tree

 Clang: ASTMatchers and extension points

 C++ standard library: iostream customization points

 One too many C++ university classes

5

BENEFITS

 Can work with super class (base class) at compile-time
 calls the right method at runtime

 no need to bookkeep function pointers and similar

 Heavily optimized by compiler writers to de-virtualize simple cases
 E.g.: current-gen non-user-specialized iostreams, C++ XAML, and more

6

DRAWBACKS

 ABI-brittle
 adding a function to class might append to virtual table, but may insert in middle of

derived class’s virtual table

 difficult to detect mismatches

 Runtime efficiency
 Does “X” need to be virtual? Must decision be delayed to runtime?

 Implementation-controlled Virtual Tables / Slicing Problem
 Base classes must be handled as pointers / references or risk slicing

7

CALLBACKS WITH USERDATA

 Function which takes a strongly-typed function pointer and a void* userdata
 Staple of C APIs everywhere, including some C standard library functions

 Highly flexible

 Used to let (application) developer do things beyond what was envisioned
 e.g., serialize data into to a std::vector instead of a FILE*

typedef int (*lua_Writer)(lua_State*, const void*, size_t, void*);

int lua_dump(lua_State* L, lua_Writer writer, void* userdata, int strip_symbols);

8

WELL-KNOWN: CALLBACKS WITH
USERDATA USAGE

 Literally every C library, ever…
 Lua, libclang,

 libpng, libjpeg

 jansson, libev, freetype

 Win32: everywhere

 C Standard Library: qsort

9

EASY TO WRAP IN C++

 Typical C call, wrapped in C++

template <typename Callback>
int dump_handler(lua_State* L, const void* data, size_t data_size, void* userdata) {

Callback& callback = *static_cast<Callback:>(userdata);
return callback(L, data, data_size);

}

template <typename Callback>
void dump_with(lua_State* L, Callback:& callback, bool strip_symbols = true) {

lua_Writer writer = &dump_handler<std::remove_reference_t<Callback:>;
void* userdata = static_cast<void:>(std::addressof(callback));
lua_dump(L, writer, userdata, static_cast<int>(strip_symbols));

}

10

EASY TO WRAP IN C++: NO TEMPLATES

 Fix the interface to save on template duplication for every callable…

using dump_function = std::function<lua_State*, const void*, size_t>;

int dump_handler(lua_State* L, const void* data, size_t data_size, void* userdata) {
dump_function& callback = *static_cast<dump_function*>(userdata);
return callback(L, data, data_size);

}

void dump_with(lua_State* L, dump_function callback, bool strip_symbols = true) {
lua_Writer writer = &dump_handler;
void* userdata = static_cast<void*>(std::addressof(callback));
lua_dump(L, writer, userdata, strip_symbols);

}

11

EASY TO WRAP IN C++: NO TEMPLATES

 std::function is expensive
 Higher efficiency, low cost for (maybe) C++20: std::function_ref

using dump_function = std::function_ref<lua_State*, const void*, size_t>;

int dump_handler(lua_State* L, const void* data, size_t data_size, void* userdata) {
dump_function& callback = *static_cast<dump_function:>(userdata);
return callback(L, data, data_size);

}

void dump_with(lua_State* L, dump_function callback, bool strip_symbols = true) {
lua_Writer writer = &dump_handler;
void* userdata = static_cast<void:>(std::addressof(callback));
lua_dump(L, writer, userdata, strip_symbols);

}

12

EASY…?

 Inline and synchronous execution:
 No need for storage

 No need to manage lifetime

 Non-inline execution:
 Callling it later (events in Qt, libev, etc.)? Need storage.

 Multithreading? Need storage.

 Storage means lifetime…

13

BENEFITS

 Space and time efficient
 especially if callback never needs to be stored

 function pointers are cheap

 ABI-hardy
 difficult to break ABI unless the actual callback interface changes

 user can place extra data into void* for their needs at no cost to library

14

DRAWBACKS

 Exception/early exit issues
 if stored, is the callback called when an exception is tossed/failure is reported?

 In-lining optimizations for compiled code becomes restricted
 qsort(…) vs. std::sort(…)

 link time optimizations helps here

 Lifetime issues, when
 storing the callback to call “at a later date”

 multithreading concerns

15

COMPILE-TIME EXTENSION

Picking and choosing work to execute using compile time choices

16

EXTENSION METHODOLOGIES 📜

 Compiler-Assisted
 (Partial) Class Template Specializations

 “Koenig”/Argument-Dependent Lookup (ADL)

 Static friend functions

 Template functions + Overloading

 Author Mandated
 Traits/Policy/Agent templates

17

CLASS TEMPLATES + SPECIALIZATION

 Uses a class template

 User then (partially) specializes a class for this template

 Case studies: sol2, std::hash
 Base template, user specialized templates

 Using this class:

struct two_things {
int a;
bool b;

};

18

SOL2 AND STD::HASH

case studies in class template specializations

19

SOL::STACK::GETTER<T, C>

// sol.hpp, sol2

namespace sol { namespace stack {

template <typename T, typename C = void>
struct getter {

static T get(lua_State*, int, record&) {
/* default implementation here */

}
};

}} // namespace sol::stack

20

FULL SPECIALIZATION

// user.cpp

namespace sol { namespace stack {

template <>
struct getter<two_things> {

static two_things get(lua_State*, int, record&) {
/* user code here */

}
};

}} // namespace sol::stack

21

PARTIAL SPECIALIZATION

namespace sol { namespace stack {

template <typename T>
struct getter<T, std::enable_if_t<std::is_arithmetic_v<T::> {

static T get(lua_State*, int, record&) {
:* implementation for all numerics :/

}
};

} :/ namespace sol::stack

22

DRAWBACK: MUTUAL EXCLUSION

 Fail to separate base implementation versus user implementation
 All user customization points must occupy the same finite code space

 All full and partial specializations must not collide (mutual exclusion principle)

 Bad design in sol2 led to a few annoying collisions/fighting with user
specializations

💥 ✔️✔️

23

DRAWBACK: SPECIALIZATION COLLISIONS

namespace sol { namespace stack {

template <typename T>

struct getter<T, std::enable_if_t<std::is_integral_v<T::> {

:/ ^ ERROR: ambiguous specialization

static T get(lua_State*, int, record&) {

:* implementation for integers :/

}

};

} :/ namespace sol::stack

24

DRAWBACK: SPECIALIZATION COLLISIONS

namespace sol { namespace stack {

template <>

struct getter<std::string> {

// ^ ERROR: multiple matches (sol2 has one already)

static std::string get(lua_State*, int, record&) {

/* implementation for std::string */

}

};

} // namespace sol::stack

25

DRAWBACK: SPECIALIZATION COLLISIONS 💥

template <typename T>
struct custom_point<T,

std::enable_if_t<
has_begin_end_v<T>

>
>
{

/*… */
};

template <typename T>
struct custom_point<

my_vector<T>
>
{

:*… :/
};

lib.hpp
user.hpp

E
R
R
O
R

26

DRAWBACK: VISIBILITY AND DEFAULTS 👀

 Is the class template specialization…
 visible in all possible translation units where it may be used?

 body dependent on macros that are not defined for the entire build (and its
dependencies?)

 Silent ODR violation that compiles, links and runs on all known compilers.
 Problematic with all compile-time extension points where default is not a noisy error

📦 Specialization must be tightly packaged with class when used!

 https://thephd.github.io/oh-dear-odr-trap

27

https://thephd.github.io/oh-dear-odr-trap

VISIBILITY AND DEFAULTS FIX?

 Undefined base template instantiation
 Errors users when nothing matches with (cryptic) “there is no defined class here”

 Impossible when you have a default implementation!

template <typename T>
struct my_customization_point; // undefined base

28

FIX: SLIGHTLY BETTER

 Define base template, but static assert to give better error than compiler
 Still impossible when you have a default implementation!

template <typename T>
struct my_customization_point {

static_assert(always_false<T>::value,
“no customization point was picked up; ”
“please define one or check your code!”);

};

29

DRAWBACK: EXTRA TEMPLATE ARGS

 Extra template argument is needed on every extension point for SFINAE traits to
be applied

 SFINAE is messy
 decltype() and is_detected SFINAE slightly less ugly than std::enable_if_t

 introduces mutual exclusion principle problems

template <typename T>
struct custom_point<T, /* SFINAE here */> {

/* … */
};

30

QUICK C++20 FIX: CONCEPTS

 Concepts allow for simpler partial specialization and remove SFINAE parameter

template <ContainerLike T> :/ concept-constrained
struct custom_point<T> {

:* … :/
};

31

DRAWBACK: “ARCANE” KNOWLEDGE 🧙

 “The code isn’t working”
 navigating the syntax and rules of template instantiations means glazed over looks and

general confusion

 when providing support, usually teach user about partial template specialization (or just
give them an example)

 Typical C++ users just want to write simple code
 Classes (with or without static functions): ✔️

 Functions (exported, inline, etc.): ✔️

 Templates (rules of ODR, visibility of specialization at time of use, etc.): ❌

32

DRAWBACK: HEADER BLOAT 🎈

 Header contamination becomes a real problem to avoid ODR issues
 entirety of sol2 comes along for the ride

 produces longer build times
 avoided with careful forward declaration of every required template and class

 unfortunately, the standard itself does not provide forward-declaring headers

 “modules will solve it?” – unfortunately, little tangible evidence I can personally provide

33

STD::HASH<T>

 Employs same struct specialization technique, but
 is substantially simpler

 has only one template argument

 Well-used, so this simple case has become idiomatic
 lack of pre-C++20 SFINAE makes it easier to teach

👨🏽‍🏫

34

STD::HASH<T> EXAMPLE

namespace std {

template<>
struct hash<two_things> {

size_t operator()(const two_things& tt) const noexcept {
auto h1(std::hash<int>{}(tt.a));
auto h2(std::hash<bool>{}(tt.b));
return my_hash_mix(h1, h2); // boost::hash_combine

}
};

} // namespace std

35

BENEFITS AND DRAWBACKS

 Good: avoids arcane knowledge requirements by
 being extraordinarily simple (write a function call operator)

 not having a SFINAE parameter (avoids mutual exclusion)

 Bad: takes core specializations away from user
 Pre-defined for enum types, integral types, etc.

 No opt-out or overriding of those defaults

 Same visibility / header contamination issues
 <functional> comes along for the ride 🐪, no forward declarations!

36

C++20 CONCEPTS: DRAWBACK?! 🤯

 Previously non-constrainable generic templates like std::hash are now…
constrainable?!

37

namespace std {

template <Conceptified T>
struct hash<T> {

size_t operator()(const T&) const noexcept {

/* what have we done…? */

}
};

} // namespace std

FREQUENT LIBRARY VENDOR COMPLAINT

 “They are opening up namespace std / my namespace 💢!”
 paper to solve this presented in Rapperswil, Switzerland, 2018; p0665

 allows a user to specialize outside classes in the namespace where the class is defined

 Library vendors are hyper-sensitive to users opening up namespace std
 people have done all sorts of interesting things in their code bases

 required all large stdlib implementations to employ :_ugly _Identifiers for realsies

38

https://wg21.link/p0665

(TEMPLATE) FUNCTIONS

Friendship and Overloading and ADL, oh my!

39

(TEMPLATE) FUNCTION OVERLOADING

 Step into the namespace of the function and add a similar name
 does not depend on Name Lookup to “find” the function in associated namespaces

 Usually explicitly blessed by library author as “possible”
 old usage: viable way to customize std::swap

 Case study
 Boost.Serialization

40

ADDING OVERLOAD INTO
BOOST.SERIALIZATION:

namespace boost { namespace serialization {

template <class Archive>
void serialize(Archive& ar, two_things& tt, unsigned int version) {

ar & tt.a;
ar & tt.b;

}

}} :/ namespace boost::serialization

41

OVERLOADING: BENEFITS AND
DRAWBACKS

 Direct additions to namespace separate extension point from target
 benefit: if optional and not required, user can move customization function to

independent header / implementation files

 drawback: if required and not optional, then separation may not be desired and causes
boilerplate/errors (“I forgot to include the special header for serialization”)

 Same complaint from library vendors
 opening up other namespaces 💢!

 potential for name collisions and similar

42

INCREASING ENCAPSULATION: FRIEND

struct two_things {
private:

friend class boost::serialization::access;

template <class Archive>
void serialize(Archive& ar, unsigned int version) {

ar & a;
ar & b;

}

public:

int a;
bool b;

};

43

FRIEND: BENEFITS AND DRAWBACKS

 Tight coupling!
 benefit: if required, desirable to make it inseparable

 drawback: compilation times for demanding Boost.serialization come along with the
main header

 Makes library vendors happy
 Titus Winters and the abseil team are smiling down at us (https://abseil.io/tips/99)

44

https://abseil.io/tips/99

ARGUMENT-DEPENDENT LOOKUP 👾

 Complicated set of rules

 Rely on namespaces of arguments to add additional symbols to unqualified calls
 primary intentional use: “generic” (templated) code to work with arbitrary types

 primary unintentional use: operators to “just find the right call” for
a == b

 Case studies:
 std::swap (the wrong way)

 std::ranges / range-v3 (the right way)

45

ARGUMENT-DEPENDENT LOOKUP: SWAP

 swap(a, b) // invokes ADL because call name is unqualified
 looks in the namespace of a and b, as well as the current scope’s namespace

 likely a bug in generic algorithm if written outside std/a or b are not std

 std::swap(a, b) // does not invoke ADL because call name is qualified
 looks only in namespace std

 likely a bug if used in a generic algorithm

 Proper way:
using std::swap;
swap(a, b);

46

“STD SWAP TWO-STEP”: VERBOSITY IS
FAILURE

“The problem with the Two-Step is that it forces users to type more to do the right
thing. FAIL. Most damning, it requires users to either blindly memorize and
regurgitate the Two-Step pattern, or worse: understand two-phase name lookup in
templates.”

– Eric Niebler, October 2014, http://ericniebler.com/2014/10/21/customization-
point-design-in-c11-and-beyond/

47

http://ericniebler.com/2014/10/21/customization-point-design-in-c11-and-beyond/

ARGUMENT DEPENDENT LOOKUP:
RANGE-V3

 Create a callable function object which does the two-step with an internal detail
namespace’s swap
 Invokes ADL but prevents qualified call to ns::swap(a, b) being a bug

 ADL is done “for you”: function object takes care of it

48

ADL DONE RIGHT™

namespace std { namespace detail {

template <Swappable A, Swappable B> // important!

void swap (A& a, B& b) { /* default implementation */ }

struct swap_func {

template <Swappable A, Swappable B>

void operator()(A& a, B& b) const noexcept {

swap(a, b); // default swap already in scope

};
};

}} // namespace std::detail
49

ADL DONE RIGHT™

 Create a constexpr object of the proper name sitting in the namespace

namespace std {

// C++17: inline variables clue compiler in to avoid ODR
inline constexpr const auto swap = detail::swap_func{};

} // namespace std

50

ADL DONE RIGHT™ (C++14 AND BELOW)

 Create a constexpr object of the proper name sitting in the namespace
 C++17: inline constexpr to avoid ODR issues, rather than :_static_const trick

namespace std {

// older standards:
template <typename T>
struct __static_const { static constexpr T value{}; }

template <typename T>
constexpr __static_const<T>::value;

constexpr const auto& swap = __static_const<detail::swap_func>::value;

} // namespace std
51

ADL DONE RIGHT™: VERY SIMPLE

struct two_things {

int a;

bool b;

// just this

friend void swap (two_things& left, two_things& right);

};

52

WAIT, IS THAT A FRIEND FUNCTION?

 Friend functions contain a few encapsulation benefits and help avoid name
collisions

 friend functions are the same as free functions, but:
 hidden from qualified (my_namespace::func_name) calls due to being inside the class

 Findable (only) by calls which invoke ADL

53

FRIEND FUNCTIONS CASE STUDY: ABSEIL

 Abseil uses this extensively for its customization points
 in particular, AbslHashValue

struct Circle {

template <typename H>
friend H AbslHashValue(H h, const Circle& c) {

return H::combine(std::move(h), c.center_, c.radius_);
}

private:
std::pair<int, int> center_;
int radius_;

};

54

BENEFITS: ADL DONE RIGHT™

 No Two-Step;
 no subtle missed bugs in generic code

 no inconsistency in “always qualify your calls”

 Customization point writer gets there “first”

 impose initial base-level concepts on the type

 Allows user to define swap in namespace next to class / as friend function
 just a function: easy to write and read

55

DRAWBACK: OVERLOADING CATCH-ALLS

 Base implementation provided by author must SFINAE away or it will catch all
calls and hard-error everything
 must use decltypeSFINAE, concept, trailing return type with decltype or
std::enable_if_t

 Users may not properly constrain their overloads and write catch-alls
 If users write a “generic” catch-all and do not properly constrain, the extension point is

ruined for everyone

56

DRAWBACK: HIGH COLLISIONS

 Does your function take perfect forwarding references?
 prepare to cry: overloads in the same space may consume more calls than intended

 worse: they might even unintentionally work but do the non-performant / wrong thing!

namespace std {

template <class Pointer, class Smart, class... Args>
auto out_ptr(Smart& s, Args&&... args) noexcept;

} // namespace std

57

DRAWBACK: HIGH COLLISIONS

 Basically working with a black hole
 Avoid ADL for variadic forwarding functions: not a good time

namespace std {

template <class Pointer, class Smart, class... Args>
auto out_ptr(Smart& s, Args&&... args) noexcept;

} // namespace std

58

MUST CONSTRAIN
BASE IMPLEMENTATION!

namespace std { namespace detail {

template <typename A, typename B>

void swap (A& a, B& b) -> decltype(a.swap(b)) { /* … */ }

template <Swappable A, Swappable B>

void swap (A& a, B& b) { /* … */ }

// and more…

}} // namespace std::detail
59

BUT EVERYONE WILL
PROPERLY CONSTRAIN!

And other lies I told myself after I read Eric’s blog post…

60

NO.

 They will not constrain it.

 They will not use
“only concrete types”.

 The world is not full
of only experts.

61

ADL DONE… RIGHT™?

 “The Best Anyone Could Have Done With The Tools At Hand.”

 range-v3 niebloids (begin, end, iter_move, dereference, etc.) contain no opt-out
mechanism
 does not prevent the ADL problem for unintentionally bad actors

 makes it even more apparent when it does happen

 cannot call “just the basic {begin/end/swap}” because it exists in an implementation-
defined detail namespace now

62

ADL AND OVERLOADING: BIGGER
PROBLEMS

 Functions can catch unintended calls
 even if they are not templated

 consider void* pointer conversions, derived -> base conversions, and more

 Results in a huge problems for ADL and overloading
 unintended “catches” of base types and other things a user would find surprising

 Case study: sol3

63

ADL EXTENSION POINTS

 Associated extension points (not named the same!)
 sol::stack::get a value maps to sol_lua_get

 sol::stack::check a type maps to sol_lua_check

 sol::stack::push maps to sol_lua_push

int sol_lua_push(sol::types<two_things>, lua_State* L,
const two_things& things);

two_things sol_lua_get(sol::types<two_things>, lua_State* L,
int index, sol::stack::record& tracking)

template <typename Handler>
bool sol_lua_check(sol::types<two_things>, lua_State* L,

int index, Handler&& handler, sol::stack::record& tracking)

64

“DID YOU CUSTOMIZE THIS”:
TYPE TRAIT IMPLEMENTATION

template <typename::. Args>

using adl_sol_lua_push_test_t = decltype(sol_lua_push(

static_cast<lua_State:>(nullptr), std::declval<Args>()::.

));

template <typename::. Args>

inline constexpr bool is_adl_sol_lua_push_v =

is_detected_v<adl_sol_lua_push_test_t, Args::.>;

65

SOL3: ADL EXTENSION POINT FUNCTION
CALL

template <typename T, typename::. Args>

int push(lua_State* L, T:& t, Args:&::. args) {

if constexpr (is_adl_sol_lua_push_v<T, Args::.>) {

return sol_lua_push(::.);

}

else {

:* hit default if constexpr internals :/

}

}

66

SOL3: AN EXAMPLE OF OLD PROBLEMS

 Why type tags?
 To solve conversion problems; for example, pointer conversion rules

int sol_lua_push(lua_State* L, void* vp);

struct unrelated {};

int main (int, char*[]) {
sol::state lua{};
unrelated obj{};
unrelated* some_pointer = &obj;
// calls the above, not the default!
sol::stack::push(lua, some_pointer);
return 0;

}

67

DRAWBACKS: ADL AND OVERLOADS

 Must guard against conversions
 can develop smarter and more complicated traits

 prefer a type tag if the space of the ADL is unconstrained

 Have templated functions that take multiple perfect-forwarding arguments?
 just do not bother here; overload resolution will drive users crazy

68

TRAITS TYPES

Injecting compile-time extensions into the type system

69

TRAITS/POLICIES/AGENTS:
TEMPLATED CLASSES

 Deployed for classes which need customizability
 std::basic_string<CharType, TraitsType>
 std::basic_ostream<CharType, TraitsType>
 std::vector<T, Allocator>
 std::map<Key, Value, Predicate, Allocator>
 glm::mat<Rows, Colums, Type, Precision>
 nlohmann::basic_json<

MapType, ArrayType, StringType, BoolType,
SignedIntegerType, UnsignedIntegerType, FloatingType,
Allocator, Serializer

>;

70

TRAITS: BAD REPUTATION

 Interfaces for char_traits, allocators, and more from the standard
 early designs using new features in the standard

 not thoroughly vetted

 imbued in things it had
no business being in (IO and friends)

71

TRAITS: LATER ITERATIONS SUCCESSFUL

 std::map and std::unordered_map made better use of traits
 Predicate and Hash follow guidelines of std::hash

 Single-responsibility principle for Predicate and Hash

 nlohmann::json is a templated type with sensible defaults
 just change template parameter details if you do not like them!

72

NLOHMANN::JSON

 Does extensibility for its to_json / from_json calls by default as adl_serializer
 Default serializer is actually really bad: default-constructs object, passes in ref to that

object to fill in

 But… nothing stops you from doing the following:

using json_but_with_good_serializer
= nlohmann::basic_json<…, good_serializer>;

using json_but_with_optimized_map =
nlohmann::basic_json<spp::sparse_hash_map, …>;

73

BENEFITS

 Easier to customize for user’s needs
 “I just need this one behavior in this localized area”

 Follows Chandler’s C++ Principle
 Pretty good performance by default, but then can flip the car hood up and start customizing

things

74

DRAWBACKS

 Change the template, change the type
 cannot interoperate with sibling types by default (unless explicitly programmed in)

 Brittle ABI
 change default template parameters -> change name mangling

 change template name -> any using/typedefs change name mangling

 “Too much customizability”
 Need to resist temptation to repeat mistake of std::char_traits

75

SO… WHICH DO WE USE?

76

🤷‍♀️ IT DEPENDS 🤷‍♀️

 Each scenario has benefits and drawbacks
 A bit of guidance for the scenarios

77

STRUCT SPECIALIZATION: BEST FOR
PRECISE MATCHING

 Class SFINAE is some of the most expensive SFINAE one can perform
 second only to non-concept function SFINAE in template arguments

 SFINAE done on the return type of a function is faster

 if constexpr is fastest

 Template matching is very precise and does not do even basic conversions
 less flexible than overload conversions

 must define template for base class, first derived, second derived, etc. even if they are
all do the same thing

 Guidance: use for precise matching, internal details, no conversions

78

ADL: BETTER FOR STATELESS
CONSISTENCY

 “pick up and play” feeling
 works from anywhere, obeys the same rules (however complicated)

 better for the library developer space

 sol3 picked ADL extension points for many reasons
 user had to be able to be consistent across translation units

 harder to have fixed ABI with trait-based state classes

 sol::state / sol::state_view can work with underlying VM from anywhere

 better for handling type-deficient Lua and C coding environment (interop)

📞 ⚡

79

ADL: STATELESS AND OLD CODE

 Guidance: use niebloids (range-v3) style...
 when you know user does not need access to base implementation

 when you are confident user will not do things to step on base implementation’s toes

 when you want to make sure someone can pass the functions to higher order functions

 Guidance: use sol3 separate-named-function style…
 when getting to the default behavior in a well-defined way matters

 when users are likely to define a large set of customizations

 when users will be working with types they do not own often

📞 ⚡

80

TRAITS: BETTER FOR MULTITHREADED
ENVIRONMENTS

 For when user has more control over the system and does not have to work in
existing code
 each class can have highly customized behavior specific to needs

 avoids needing to share a single global universe of overload resolution / ADL space with
others

 great for application space

 great for environments that are already type-rich / generic (C++)

 Can deploy one trait class in one area, another in a separate area
 avoids ODR at the cost of having more types

 highly-tailored needs

81

FUTURE TALKS?

 Fully Runtime Extension Points for C++ Applications
 Unassisted Runtime DLL Loading

 LoadLibrary + GetProcAddress / dlopen + dlsym

 Hooking

 mhook / LD_PRELOAD

 Hot Reloading

 Debug Gap Placements to compile new code into

 Visual C++ debug compilation

 “Versioning” for the purposes of loading/calling code
 ABI restrictions and friends

82

FUTURE TALKS?

 “The Future of Customization Points in C++23: Customization Point Functions”
 Matt Calabrese’s p1292: https://wg21.link/p1292

 He didn’t sign up to do this talk, but he is introducing a paper which makes
customization points easy to write, read and reason about

 I think it would be a cool talk.
 Hint hint.

 Wink wink.

 Nudge nudge.

83

https://wg21.link/p1292

FUTURE TALKS?

 “The Future of Customization Points in C++23: Customization Point Functions”
 Matt Calabrese’s p1292: https://wg21.link/p1292

 He didn’t sign up to do this talk, but he is introducing a paper which makes
customization points easy to write, read and reason about

 I think it would be a cool talk.
 Hint hint.

 Wink wink.

 Nudge nudge.


Hey Matt do the talk.

84

https://wg21.link/p1292

THANK YOU !

 Eric Fiselier, Titus Winters
 Challenged me to research generic

extension mechanisms for std::out_ptr (p1132)

 Isabella Muerte
 “Tell them an ADL customization point is insane”

(she was right; overloading concerns were insane)

 Lounge<C++>, include<C++>

85

https://thephd.github.io/vendor/future_cxx/papers/d1132.html

QUESTIONS?

86

@thephantomderp
https://twitter.com/thephantomderp

Patreon - thephd
https://www.patreon.com/thephd

The Pasture
https://thephd.github.io

LinkedIn - thephd
https://www.linkedin.com/in/thephd

https://thephd.github.io/
https://www.patreon.com/thephd
https://thephd.github.io/
https://www.linkedin.com/in/thephd

